Gradient Boosting Classifier
Explanation & Rationale
This strategy utilizes a Gradient Boosting Classifier to analyze the past 30 days of stock data and predict the next day’s market direction. By incorporating technical indicators such as moving averages, RSI, MACD, and Bollinger Bands as features, the model aims to identify patterns that drive price movements. The approach leverages machine learning to adapt to complex market conditions, potentially improving prediction accuracy over traditional rule-based strategies.
Code
'''Gradient Boosting Classifier Strategy.
Trains a Gradient Boosting Classifier using the past 30 days of data to predict the next day's action.The model leverages basic technical indicators as features to make predictions.Learn more @ docs.ubacktest.com/examples/machine-learning/gbclassifier'''
import pandas as pdimport numpy as npfrom sklearn.ensemble import GradientBoostingClassifierfrom sklearn.preprocessing import StandardScaler
def create_features(data, indicator_window=14):
data[f'SMA_{indicator_window}'] = data['close'].rolling(window=indicator_window).mean() data[f'volume_{indicator_window}'] = data['volume'].rolling(window=indicator_window).mean() delta = data['close'].diff() gain = (delta.where(delta > 0, 0)).rolling(window=indicator_window).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=indicator_window).mean() data[f'RSI_{indicator_window}'] = 100 - (100 / (1 + gain / loss)) data[f'EMA_{indicator_window}'] = data['close'].ewm(span=indicator_window, adjust=False).mean() data['EMA_12'] = data['close'].ewm(span=12, adjust=False).mean() data['EMA_26'] = data['close'].ewm(span=26, adjust=False).mean() data['MACD'] = data['EMA_12'] - data['EMA_26'] data['MACD_signal'] = data['MACD'].ewm(span=9, adjust=False).mean() # Signal line for MACD data['bollinger_upper'] = data[f'SMA_{indicator_window}'] + (data['close'].rolling(window=indicator_window).std() * 2) data['bollinger_lower'] = data[f'SMA_{indicator_window}'] - (data['close'].rolling(window=indicator_window).std() * 2)
return data
def gradient_boosting_classifier(data, training_window=30, indicator_window=14, n_estimators=100, learning_rate=0.1, max_depth=3):
# Create features data = create_features(data, indicator_window)
# Create the target variable: 1 if the next day's price is higher, -1 if it is lower data['target'] = (data['close'].shift(-1) > data['close']).astype(int) * 2 - 1
features = [ 'close', 'volume', f'SMA_{indicator_window}', f'volume_{indicator_window}', f'RSI_{indicator_window}', f'EMA_{indicator_window}', 'MACD', 'MACD_signal', 'bollinger_upper', 'bollinger_lower', ]
scaler = StandardScaler() # Standardize features for better Gradient Boosting performance predictions = []
for i in range(training_window+indicator_window, len(data)): train_data = data.iloc[i-training_window:i] # Rolling window for training test_data = data.iloc[[i]] # Single test point (next day)
X_train, y_train = train_data[features], train_data['target'] X_test = test_data[features]
# Scale the data X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test)
# Train the Gradient Boosting model model = GradientBoostingClassifier(n_estimators=n_estimators, learning_rate=learning_rate, max_depth=max_depth, random_state=42) model.fit(X_train_scaled, y_train)
# Make prediction pred = model.predict(X_test_scaled)[0] predictions.append(pred)
# Assign predictions back to the data data.loc[data.index[training_window+indicator_window:], 'signal'] = predictions
return data
def strategy(data):
# Call the gradient_boosting_classifier function to get signals data = gradient_boosting_classifier(data)
return data