KNN Classifier
Explanation & Rationale
The K-Nearest Neighbors (KNN) strategy applies a machine learning model to predict stock movements based on historical data and technical indicators. By comparing the latest market conditions to similar past instances, the model classifies the next day’s expected price movement based on the most common outcome among its nearest historical neighbors. This approach is useful for pattern recognition in financial data, allowing the strategy to adapt dynamically to evolving market conditions.
Code
'''K-Nearest Neighbors (KNN) Classifier.
Trains a K-Nearest Neighbors Classifier using the past 30 days of data to predict the next day's action.The model leverages basic technical indicators as features to make predictions.Learn more @ docs.ubacktest.com/examples/machine-learning/knnclassifier'''
import pandas as pdimport numpy as npfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.preprocessing import StandardScaler
def create_features(data, indicator_window=14):
data[f'SMA_{indicator_window}'] = data['close'].rolling(window=indicator_window).mean() data[f'volume_{indicator_window}'] = data['volume'].rolling(window=indicator_window).mean() delta = data['close'].diff() gain = (delta.where(delta > 0, 0)).rolling(window=indicator_window).mean() loss = (-delta.where(delta < 0, 0)).rolling(window=indicator_window).mean() data[f'RSI_{indicator_window}'] = 100 - (100 / (1 + gain / loss)) data[f'EMA_{indicator_window}'] = data['close'].ewm(span=indicator_window, adjust=False).mean() data['EMA_12'] = data['close'].ewm(span=12, adjust=False).mean() data['EMA_26'] = data['close'].ewm(span=26, adjust=False).mean() data['MACD'] = data['EMA_12'] - data['EMA_26'] data['MACD_signal'] = data['MACD'].ewm(span=9, adjust=False).mean() # Signal line for MACD data['bollinger_upper'] = data[f'SMA_{indicator_window}'] + (data['close'].rolling(window=indicator_window).std() * 2) data['bollinger_lower'] = data[f'SMA_{indicator_window}'] - (data['close'].rolling(window=indicator_window).std() * 2)
return data
def knn_classifier(data, training_window=30, indicator_window=14, n_neighbors=5):
# Create features data = create_features(data, indicator_window)
# Create the target variable: 1 if the next day's price is higher, -1 if it is lower data['target'] = (data['close'].shift(-1) > data['close']).astype(int) * 2 - 1
features = [ 'close', 'volume', f'SMA_{indicator_window}', f'volume_{indicator_window}', f'RSI_{indicator_window}', f'EMA_{indicator_window}', 'MACD', 'MACD_signal', 'bollinger_upper', 'bollinger_lower', ]
scaler = StandardScaler() # Standardize features for better KNN performance predictions = []
for i in range(training_window+indicator_window, len(data)): train_data = data.iloc[i-training_window:i] # Rolling window for training test_data = data.iloc[[i]] # Single test point (next day)
X_train, y_train = train_data[features], train_data['target'] X_test = test_data[features]
# Scale the data X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test)
# Train the KNN model model = KNeighborsClassifier(n_neighbors=n_neighbors) model.fit(X_train_scaled, y_train)
# Make predictions pred = model.predict(X_test_scaled)[0] predictions.append(pred)
# Assign predictions back to the data data.loc[data.index[training_window+indicator_window:], 'signal'] = predictions
return data
def strategy(data):
# Call the knn_classifier function to get signals data = knn_classifier(data)
return data